
www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

49

Adaptation of PyFlag to Efficient Analysis of
Seized Computer Data Storage

Aleksander Byrski Ph.D.
Assistant professor at the Department of Computer Science

AGH University of Science and Technology
Krakow, Poland

olekb@agh.edu.pl

Wojciech Stryjewski
AGH University of Science and Technology

Krakow, Poland
stryjew@student.agh.edu.pl

Bartłomiej Czechowicz

AGH University of Science and Technology
Krakow, Poland

czechow@student.agh.edu.pl

ABSTRACT
Based on existing software aimed at investigation support in the analysis of
computer data storage seized during investigation (PyFlag), an extension is
proposed involving the introduction of dedicated components for data
identification and filtering. Hash codes for popular software contained in
NIST/NSRL database are considered in order to avoid unwanted files while
searching and to classify them into several categories. The extension allows for
further analysis, e.g. using artificial intelligence methods. The considerations are
illustrated by the overview of the system's design.
Keywords: digital forensics, exploration of seized data storage, disk analysis,
PyFlag, system log analysis

1. INTRODUCTION
An analysis of seized computer data storage poses interesting challenges for a
forensic expert. Files containing interesting data (e.g. captured network traffic,
illegal multimedia) may be difficult to find, especially when dealing with
(nowadays popular) large storage capacities. The data contained on the storage
(hard disks, DVD, flash disks etc.), may be located in multiple nested directories
of random structure, therefore being hard to analyze by a forensic expert equipped
with simple tools for directory browsing only.
In order to help a forensic expert in finding interesting, unknown or wanted data

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

50

files, while at the same time ignore files containing unimportant or already known
data, a dedicated software should be designed. The possibilities of extracting
high-level information (e.g. by the means data mining, social network data
extracting) of certain data files (e.g. system or server logs) would be also welcome
(see Cohen 2008). The system should process very large files, should be scalable
(i.e. more available hardware should lead to faster processing) and should offer
the possibility of further extending its features (e.g. by means of component-based
architecture (see Szyperski 2002)).
At the same time, the software and the whole acquisition process should fulfill
requirements posed by law (in order to retain the evidentiary value of the seized
data). Such requirements may be referred, e.g. in (US DOJ 2004) for U.S. law. In
Poland these requirements are usually fulfilled by using hardware blockers (for
writable media such as hard disks) (see Goc and Moszczynski 2007; Fischer
2000). The software should also be easily adaptable to the particular examination
requirements of the Police from any other country.
In the course of this paper, the extension PyFlag/FLUSH of a popular digital
forensics tool PyFlag (see Cohen and Collett 2005) is presented. The software
was adapted to the specific demands of forensic experts after consultation with
Polish Police investigators. The presented system was designed according to the
software component paradigm.
2. PYFLAG – UNIVERSAL FORENSIC DISK ANALYSIS SOFTWARE
Flag (Forensic and Log Analysis GUI1) is an advanced forensic tool for the
analysis of log files and forensic investigation. PyFlag, Python-based
implementation of Flag, was originally designed by the Australian Department of
Defense and later released under the Gnu Public License. PyFlag has the
following features (see Cohen 2008):

 network forensics: PyFlag can analyze network traffic captured in
TCPDump format, it supports many popular network protocols (e.g.
HTTP, MSN Chat, SMTP and POP and others),

 log analysis: PyFlag can analyze many log files (e.g. Apache Web
Server, Microsoft IIS), user may define his own log analysis presets,

 disk forensics: PyFlag can analyze different file formats (e.g. windows
event log, PCAP – Tcpdump format, PDF, HTML, zip),

 file carving: recently file carving capability (finding files based on
their content in raw disk partitions when no file system is present) was
also introduced into PyFlag,

 memory forensics – PyFlag can analyze captured RAM images from
Windows XP SP2 (using Volatility Framework).

1 http://www.pyflag.net

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

51

User interface of PyFlag is web based, therefore it can be deployed on a central
server and shared with a number of users at the same time. Data is loaded into
cases which keeps information separated (see Cohen and Collett 2005).
In Fig. 1 an overview of the PyFlag structure is shown. IO Source is used to
access the file system mounted, e.g. as a raw image (created by the use of
Unix/Linux dd program), ISO image or file system directory. VFS stands for
Virtual File System and is used to gather information about all files found in the
file system using the hierarchical directory structure mirroring the original
directory structure of the file system and containing so called i-nodes (string
describing how to access an object, the concept similar to i-nodes from
Unix/Linux file systems).
File System loader is used to populate VFS with i-nodes assigned to every
possible data sources present in the file system. Scanners are modules operating
on VFS i-nodes and gathering specific information about them, e.g. there may
exist specific scanner used to find Apache Web Server logs or to process ZIP
archive in order to extract the files contained there and include them into VFS.
Database is used to store the outcome of scanning and may be used to browse
information by the GUI.

Figure 1: Overview of PyFlag structure (Cohen and Collett 2005)

It is easy to see that this structure is very easily extensible. For example, the core
functionality of PyFlag and construction of VFS, allow searching, accessing and
processing contents of the examined file system regardless of its nature.
Moreover, different additional filters may be defined in order to search for
different potentially interesting files such as personal communicator archives, web
server logs, mailboxes etc.
The abstract structure of VFS and the possibility of adding new filters allow for

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

52

further extension and introducing more sophisticated methods for data analysis
(e.g. artificial-intelligence based such as data mining or expert systems).

3. NIST/NSRL DATABASE
National Software Reference Library (NSRL2) is a library where information
about different types of popular software is collected. This library holds, among
others, signatures of the files associated with certain software releases and
additional meta data.
The project is sponsored by many organizations, e.g. U.S. Department of Justice's
National Institute of Justice (NIJ) and National Institute of Standards and
Technology (NIST). It is aimed at supporting the effective use of software
technologies in the investigation of computer crimes. This library can be used by
penal prosecution agencies, police or other forensic organizations.
Popular volumes containing operating systems incorporate thousands or even
hundreds of thousands files, which poses a serious problem for the investigator
who wants to find a certain file or all files of certain type. NSRL helps investigate
large volumes of seized data , because it contains signatures of files that may be
found in popular software releases, therefore the investigator can avoid localizing
these files and focus on those unknown. In this way the NSRL database can be
used as a basis for automatic filtering software able to recognize and classify the
files present in the seized file system. The process of classification is based only
on the the contents of the file (not the name, which may be deceptive) using
popular hash codes MD5 and SHA1 (see Oppliger 2001).
The NSRL database provides the following data for the files held in popular
software:

 SHA1 and MD5 hash codes,

 Name and size of file,

 CRC32 code,

 Product code,

 Operating system code.

PyFlag supports NIST/NSRL database import, however in order to use this
information efficiently, there arises a need to modify the data contained in the
database and to add additional meta data. These requirements will be covered
later in this contribution.

4. PYFLAG/FLUSH FUNCTIONAL REQUIREMENTS
PyFlag was designed and implemented as a tool used mainly for discovering log
files in the file system, displaying and manipulating them. However, the software

2 http://www.nsrl.nist.gov

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

53

has a great potential of possible adaptation to different needs of users, especially
as the project is open-source and written in a very clear and simple-to-use
language (Python) (Van Rossum and Drake Jr. 2006; Summerfield 2008).
Moreover, some interesting concepts found in PyFlag can easily be reused and
populated into more advanced environments, e.g. virtual file system allows
creating a model of the file system which may be further manipulated by any
algorithm, in particular embedded in one of PyFlag filters.
PyFlag has been chosen by the officers of Polish Police as a tool for exploring
seized data storage, however, in order to improve and adapt it to their specific
demands, several improvements had to be made.
After the analysis and consultations, the extension (PyFlag/FLUSH) fulfills the
following demands:

 Localizing and pointing out different files of interest, e.g.
communicator archives, mailboxes, multimedia files and others, based
on the file content (not extension or naming convention).

 Correct handling of unwanted files (present in popular operating
systems), such files should not be taken into consideration in analyses
and reports.

 Correct handling of wanted files. In pursuit of illegal (mostly
containing pedophilia) graphics, movies etc., the investigator would
like to have the possibility of importing hashes describing common
illegal files and include them into a report.

 Reporting occurrences of unknown files (not defined as known and
not defined in the database of common files).

 The possibility of importing predefined hashes for known and
unknown files.

 Integrate ready-to-use software tools for file carving (recovering
deleted or cached files), compressed archive handling.

5. DESIGN AND IMPLEMENTATION OF PYFLAG/FLUSH
The key feature of the PyFlag/FLUSH is based on classifying the files that may
be found by the system into four categories:

 Wanted Files - all files found in the data storage whose SHA1 or MD5
hash-code were given by the user; they usually contain common
illegal material present in many seized computers.

 Known Files - all files which SHA1 or MD5 hash-code may be found
in extended NIST/NSRL database.

 Unknown Files - all files which were neither classified as Wanted or

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

54

NIST/NSRL.

 Suspected Files - all files which were selected by the investigating
officer as those potentially containing illegal material - they must be
examined by a forensic expert.

The following functions were added to PyFlag during the implementation of
PyFlag/FLUSH so as to meet the functional requirements identified during the
interview with Police investigating officers:

 Load Wanted Files - loading into hash database selected files, which
are to be found by the user in the data storage. Such files usually
contain illegal content (e.g. pedophilia). For each of the selected files
the system computes SHA1 and MD5 hash codes which are added
into database. If the system finds one of these files during scan, it will
be added to the category Wanted Files. After finishing the scan, the
user will get the appropriate report containing wanted files.

 Load Wanted Hashes –analogous to Load Wanted Files, loading
hashes written in simple CSV-like text file, containing SHA1 or MD5
hashes (both of them may be given at the same time).

 Load Known Database – loading hashes from NIST/NSRL format.
The hashes are used for classification of the files found during the
examination of the seized data storage.

 Extend Known Database - loading into hash database selected files
that should not be found by the system, i.e. they should be treated
exactly as the files contained in NIST/NSRL database.

 Generate (HTML, CSV) Report – generating report in HTML or CSV
format containing a list of found files for each category.

 Find Known Files – looking for the already known files in the system
(their hashes are contained in NIST/NSRL database).

 Find Wanted Files - looking for the files classified as Wanted Files.

 Find Suspected Files - looking for the files that are unknown (neither
contained in NIST/NSRL database, nor imported by the user).
Actually these are all the files without corresponding hash in the
database.

 Find Log Files – looking for HTTP server log files: Apache and IIS
(based on the file's content, not the name), more localizing filters are
planned (e.g. communicator archives).

 Export Suspected files - copying selected files into chosen directory,
the directory structure of the files is preserved and additional report
(HTML, CSV) is generated.

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

55

Figure 2: UML Class diagram for PyFlag/FLUSH

Taking advantage of the extension possibilities of PyFlag, the authors managed to
enclose our functional requirements into a group of classes that may be added to
the basic PyFlag environment. Due to Python programming language nature, no
compilation is needed. Therefore, in order to implement the functions that operate
on VFS, and to analyze the contents of storage at the same time using the
information contained in NIST/NSRL database, all that had to be done was to
inherit from PyFlag form classes (Reports.report). This class has the following
methods:

 form(): displays the main dialog window for the report,

 analyse(): processes the informations provided by the dialog window
defined in form(),

 progress(): informs about the progress of analysis; these two methods
are implemented usually for time-costly applications,

 display(): displays the information contained in database.

In this way the classes for all mentioned functions (e.g. for finding
UnknownFiles, KnownFiles, SuspectedFiles etc.) were implemented. All these
classes are bound with the graphical user interface of PyFlag and are responsible
for displaying the results in the PyFlag forms.
The relations among the classes was presented in Fig. 2 in the form of UML Class
Diagram (Booch et al 1998).
In order to write the scanner for analyzing the contents of the files present in the
data storage, the authors had to implement the interface ScanIfType having the
following methods:

• boring(): used for checking whether the scanner needs the
subsequent part of the analyzed data,

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

56

• process(): updates the state of the object computing the MD5 and
SHA1 hashes for the processed file,

• finish(): uses the computed hashes for checking the file in
NIST/NSRL database in order to classify it into classes already
mentioned.

In this way HashScan scanner was implemented.
In Fig. 3, an overview of the structure of database implemented in PyFlag/FLUSH
was presented using one of the most popular diagrams used in structural analysis -
Entity Relationship Diagram. In order to quickly clarify the model presented in
this figure, one should notice that there is 1:1 mandatory relationship between File
and Inode tables, 1:1 optional relationship between File and SuspectedFiles, 1:N
optional relationship between WantedHashes and WantedFiles and so on. For
detailed description of the notation see e.g. Chen 2002.
There are three main groups of tables, the first one (in red region) comes directly
from PyFlag and others were added during implementation of PyFlag/FLUSH.
Tables displayed in green region were implemented in order to add the
functionality demanded by the police investigators (the possibility of classifying
the files found in the file system into distinct groups). Tables displayed in blue
region are used to store the NIST/NSRL data and, moreover, they will be usable
in the future for more sophisticated analysis (e.g. identifying of installed software,
described later in this paper).
Detailed description of the tables is given below (see Fig. 3):

 File and Inode - legacy tables from PyFlag. They are used to store the
information about the files and VFS i-nodes.

 KnownFiles, UnknownFiles, WantedFiles, WantedHashes - tables
containing the hash codes and i-nodes of the files found during an
examination performed in a certain case.

 hashdb_Hashes - contains unique values of hash codes (because files
may be present in different software, which introduces multiple
identical hash codes into the table nsrl_hashes).

 hashdb_Hashes was introduced in order to speed up the search
process.

 nsrl_hashes - contains the informations about the the software to be
found in the examined storage devices.

 nsrl_products, nsrl_products, nsrl_mfg - these tables are used to store
the meta data concerning operational system, identification of
software products and software manufacturers, and will be extensively
used in the future.

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

57

Figure 3: Overview of PyFlag/FLUSH database structure

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

58

6. INSTALLATION AND USING SCENARIOS OF PYFLAG/FLUSH
The installation process of PyFlag/FLUSH consists mainly in installing PyFlag
and involves using standard Linux commands to acquire necessary packages and
compile them.For details refer to (Van Rossum and Drake Jr. 2006). After
successful installation of PyFlag, PyFlag/FLUSH files should be copied into the
directory containing PyFlag plugins3. Now the latest version of NIST/NSRL
database should be downloaded4 and imported into PyFlag using the command
LoadHashes, Load NSRL Hashes.
PyFlag/FLUSH may be used according to one of the following scenarios:

 Standalone installed - PyFlag/FLUSH may be installed in the fully
configured Linux or Windows machine and then used as a means to
investigate data storage connected with the use of a hardware blocker.
According to the capabilities of PyFlag, an image of the file system
may also be examined. This scenario should be suitable for individual
forensic experts (also working on scene).

 Standalone virtual - Instead of installing PyFlag/FLUSH directly into
the system, it may be installed in a virtual machine (e.g. VMWare
based) (the authors recommend Ubuntu Linux as a distribution easy to
install and handle, already tested with PyFlag/FLUSH). Now, the
system may be run in most of the popular operating systems with the
use of VMWare Player (distributed as freeware). Again, the examined
data storage itself or its image may be connected to PyFlag. This
scenario is practically the same as the previous one, at the same time
having the advantages of virtualization (e.g. easy duplication of
already installed and configured system, hardware independence).

 Server based - A dedicated server may be used to run PyFlag/FLUSH,
and using the web-based interface many experts can use it
simultaneously. However, in order to connect the examined data
storage to the server, the most convenient way would be to share it
across the network. For this configuration, the increased network load
during the analysis should be considered.

In all the above mentioned cases, a need arises to provide PyFlag/FLUSH with
enough disk space to hold NIST/NSRL database and to allow operation (e.g.
counting hash-codes). During testing, the required data storage used for
PyFlag/FLUSH operation was usually at least equal to the examined data.
Considering this, the third solution (server based) might be optimal for
performing the examination in a forensic laboratory (with dedicated server for
disk storage analysis), especially when many experts want to share the

3 Usually located in /usr/local/lib/python/pyflag/Plugins
4 See http://www.nsrl.nist.gov/Downloads.htm

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

59

NIST/NSRL database.
The first or the second solution would be optimal for the installation on mobile
computer or for selected forensic experts only.

7. FURTHER EXTENSIONS: DETECTION OF INSTALLED
SOFTWARE

The analysis of seized data storages is usually aimed at collecting information
about the user by localizing and accessing his archive files such as mailbox,
communicators archives, history of browsed WWW pages, private documents or
multimedia files. Testing of legality of installed software is also in the scope of
the investigator's interests.
The problem of legality testing usually arises while seizing hardware from the
users suspected of any computer crimes such as illegal software exchange or
pedophilia multimedia share.
The investigating officer can manually search in the file system for the installed
popular commercial software and write the report on his own, however, several
problems arise:

 the simplest solution would be to run the system and check the
installed software, but there might be no possibility of getting an
account with sufficient privileges or the hardware might be broken
(even intentionally by the user),

 more complex solution would be to browse the mounted disk partition
with standard set of search-tools (such as find, grep and other basic
utilities of Unix-like systems), however, this process will be long,
tedious and error-prone,

 the best solution would be to relay on a more complex file searching
tool (e.g. PyFlag/FLUSH), extending it to capabilities of testing the
found groups of files against accordingly modified NIST/NSRL
database, which containins meta data describing versions of the
software.

This possible extension of PyFlag/FLUSH should be based at least on some
simple statistical analysis of the files found (and comparing them with the hash-
codes contained in the NIST/NSRL database). More sophisticated methods will
employ such methods of artificial intelligence as expert systems or fuzzy logic
(see Russel and Norvig 1995).
Without such complex techniques it would be hard to determine the version of the
software, because, e.g. a newer one might contain files from the older version.
The proposed further extension of PyFlag/FLUSH is currently under development
and will be presented in the future.

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

60

8. CONCLUSIONS
In the course of paper the extension of a well-known forensic utility PyFlag –
PyFlag/FLUSH was presented. The extension was constructed according to the
requirements analysis prepared with the help of Polish Police investigating
officers.
The authors are aware, that many functional requirements described by us may be
met by such popular forensic tools as EnCase5, however we propose our solution
as an open-source extension of PyFlag with emphasis on modularity and
component-orientation, hoping that these features, although may not gather direct
attention of forensic investigators, but should significantly reduce the amount of
time spent for further adaptation and extending of the proposed system by the
software developers (e.g. the ones hired for adaptation of the system for the
specific needs of a certain research and investigation institute) .
The extension was prepared using the Python programming language in order to
retain coherency with the original PyFlag. The presented architecture of PyFlag
allows to extend its capabilities and we aimed at preparing certain software
framework (according to the notions of software components) so that in the
future, new extensions may be possible.
A more sophisticated analysis will be possible by introducing into the framework
artificial-intelligence methods such as basic expert systems, allowing, e.g., the
analysis of the contents of the seized storage.In the future, PyFlag/FLUSH will
allow to identify the installed software (e.g. for checking its legality).
Although PyFlag/FLUSH responds mainly to the demands of Polish Police
investigating officers, the nature of the software makes it ready for further
improvements and adaptation to the particular user's needs, so that it may be
adapted for other investigators.

REFERENCES
Booch, G., Rumbaugh, J., Jacobson, I. (1998). The Unified Modeling
Language User Guide. Addison-Wesley.
Chen, P. (2002). Entity-relationship modeling: Historical events, future trends,
and lessons learned. In: In: Software Pioneers: Contributions to Software
Engineering. Springer, pp. 297-310.
Cohen, M. (2008). PyFlag an advanced network forensic framework. Digital
Investigation 5 (1).20
Cohen, M., Collett, D. (2005) Python Forensic Log Analysis Gui (PyFlag).
http://www.pyflag.net.

5 http://www.guidancesoftware.com

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

61

Fischer, G. (2000) Przestępstwa komputerowe i ochrona informacji. Aspekty
prawno-kryminalistyczne (Computer crimes and information security. Law
and criminalistic aspects, in Polish). Kantor Wydawniczy Zakamycze,
Warsaw.
Goc, M., Moszczyński, J. (Eds.) (2007). Ślady kryminalistyczne (Criminalistic
traces, in Polish). DIFIN Warsaw.
Oppliger, R. (2001). Contemporary Cryptography. Artech House.
Russell, S., Norvig, P., 1995. Arti_cial Intelligence: Modern Approach.
Prentice Hall.
Summerfield, M. (2008). Programming in Python 3: A Complete Introduction
to the Python Language. Addison-Wesley Professional.
Szyperski, C. (2002). Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
US Department of Justice (2004). Forensic examination of digital evidence: A
guide for law enforcement. Tech. rep., U.S. Department of Justice, National
Institute of Justice Special Report 199408.
Van Rossum, G., Drake Jr., F. (2006). The Python Language Reference
Manual (version 2.5). Network Theory Ltd.

www.manaraa.com

Journal of Digital Forensics, Security and Law, Vol. 5(1)

62

